跳转至

25数理统计期中

约 688 个字 预计阅读时间 2 分钟

PDF

因为基本是书本上的课后习题和考研题就不写解答了(第六题可以参考韦博成的高等数理统计)

1(15分)

已知\(X_{1},X_{2},\dots ,X_{n}\overset{IID}{\sim}B(1,p)\),设其中\(0<p<1\)\(\theta=p^{2}\)
(1) 试求\(\theta\)的无偏估计的C-R下界
(2) 试求\(\theta\)的极大似然估计\(\hat\theta_{ML}\)
(3) 试证明\(E(\hat{\theta}_{ML})\neq\theta\),问\(\hat{\theta}_{ML}\)是向上偏还是向下偏

2(15分)

设总体\(X\sim N(\mu_{1},\sigma_{1}^{2}),Y\sim N(\mu_{2},\sigma_{2}^{2})\)中分别抽取容量为\(n_{1}=10,n_{2}=15\)的独立样本,可计算得\(\overline{x}=82,s_{x}^{2}=56.5,\overline{y}=76,s_{y}^{2}=52.4\)

(1)若已知\(\sigma_{1}^{2}=64,\sigma_{2}^{2}=49\),求\(\mu_{1}-\mu_{2}\)的置信水平为95%的置信区间
(2)若已知\(\sigma_{1}^{2}=\sigma_{2}^{2}\),求\(\mu_{1}-\mu_{2}\)的置信水平为95%的置信区间
(3)若对\(\sigma_{1}^{2},\sigma_{2}^{2}\)一无所知,求\(\mu_{1}-\mu_{2}\)的置信水平为95%的近似置信区间
(4)求\(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\)置信水平为95%的置信区间

3(15分)

在买面包作早点的男女消费者中,男性购买者的比例\(p\)未知,但知道\(\frac{1}{3}\leqslant p\leqslant \frac{1}{2}\),设在70个购买者中发现12个是男性,58个是女性,试求\(p\)的MLE.如果对\(p\)没有限制,试求\(p\)的MLE

4(15分)

已知\(X_{1},X_{2},\dots,X_{n}\overset{IID}{\sim}N(\mu,\sigma^{2})\),其中\(\mu\in R\)为未知参数,\(\sigma^{2}>0\)为已知参数
(1) 试求\(\mu^{3},\mu^{4}\)的UMVUE
(2)试求概率\(P(X_{1}\leqslant t)\)\(\frac{\partial}{\partial t}P(X_{1}\leqslant t)\)的UMVUE,其中\(t\in R\)为给定常数

5(15分)

设随机样本\(X_{1},X_{2},\dots,X_{n}\)来自分布\(f(x,\theta)=\theta^{2}x\exp(-\theta x),x>0,\theta>0\)
(1) 试证明\(T=\sum\limits_{i=1}^{n}X_{i}\)\(\theta\)的充分完备统计量
(2) 试求\(E\left( \frac{1}{T} \right)\)

6(15分)

\(X_{1},X_{2},\dots,X_{m}\overset{IID}{\sim}N(\theta,\sigma^{2})\),我们需求出\(\theta^{2}\)的估计,下面提供三种不同的估计序列:

\[ \begin{aligned} \delta_{1,n}&=\overline{X}^{2}- \frac{\sigma^{2}}{n},\sigma^{2} \text{已知}\\ \delta_{2,n}&=\overline{X}^{2}- \frac{s^{2}}{n(n-1)},\sigma^{2} \text{未知}\\ \delta_{3,n}&=\overline{X}^{2},\sigma^{2} \text{已知或未知} \end{aligned} \]

(1) 试给出\(\delta_{i,n}\)的渐进分布
(2) 试证明\(\delta_{1.n}\)\(\delta_{2,n}\)是渐进无偏的,而\(\delta_{3,n}\)是渐进有偏的.

7(10分)

\(X_{1},X_{2},\dots,X_{n}\overset{IID}{\sim}F(x)\),对于固定的\(x\in R\),试求总体分布\(F(x)\)的置信水平近似为\(1-\alpha\)的大样本置信区间

评论