
#分布式

分布式存储与计算_LAB

Lab 1

对于大多数未曾使用过Linux操作系统的人来说，使用WSL是一种捷径，使
用Ubuntu则可以更好的修改各种错误(因为大多数人都使用这一发行版，并
且本教程也基于Ubuntu)

跳过WSL的安装，因为实在是没有难度，你当然也可以使用虚拟机，我推
荐你使用Virtual Box，只需要修改教程相关的路径部分即可，但是我需要
提醒你不要吝啬虚拟机的内存，否则会出现节点资源不足而停摆的情况

0.帮助命令

比如查看ls命令的帮助，可以输入

1.文件操作命令的使用

第一次上机实验

目的：熟悉Linux系统和基本命令
实验环境：Linux操作系统(可以使用Ubuntu on windows,iOS系统中的
Term)

man ls & ls --help

查看文件与目录ls 进入Linux系统，输入 ls 回车(回车后命令运行，此后的
说明中省略回车 尝试ls的其它参数

2.目录命令的使用

ls -a
ls -l
ls -lrth

用vim或者vi编辑器新建一个test.txt文件(使用方式请自行搜索)，在文件中
键入任意内容：比如 this is test 保存，退出

vi test.txt
// 如果安装了vim可以直接使用vim
vim test.txt
// 按i进入insert模式
this is test
// 保存并退出
:wq

ls查看当前目录下新生成的文件test.txt
显示文件内容cat

cat test.txt

复制文件test.txt 到文件

cp test.txt test1.txt
cp test.txt test2.txt

删除命令rm，输入 rm testl.txt
移动命令,输入 mv test2.txt test1.txt

cd命令（该命令用来改变当前目录）

3.重定向输入输出，比较>和>>的作用

4.管道命令

cd mytest

mkdir命令（用于在当前目录下建立一个子目录）

mkdir mytest

rmdir命令（移除当前目录下的目录）

rmdir mytest1

pwd（显示当前路径）

pwd

移动test.txt文件（假设该文件在~/目录下)到当前目录下

mv test.txt ./ cd ~ rmdir mytest\
rm -rf mytest

 cat test1.txt
 cat test1.txt > test.txt
 cat test.txt test1.txt > test2.txt
 cat test2.txt
 cat test.txt test1.txt >> test2.txt

Lab 2

这个部分老师的操作文档写的非常混乱，我结合林子雨老师的教材和自己的经
验进行一些修改以便于操作(也修改了一些安装顺序)，下面是修改后的安装步骤

1.创建新的hadoop账户

切换账户

 cat test2.txt|wc
 cat test2.txt|awk '{print $3}'

// sudo adduser <username>
sudo adduser hadoop
sudo vim /etc/sudoers
// insert module
hadoop ALL=(ALL:ALL) ALL
// 加入位置可以选择在sudo下方

新建两个文件夹用来后续操作

2.安装两个基本文件

首先进入网址：JDK_downloads，你可以在Java achieve中找到对应的版本，
例如我使用JDK8就使用了jdk-8u451-linux-x64.tar.gz，安装在windows下即
可

直接进入官网安装即可，选择Binary版本，同样安装在windows下

安装之后需要记住位置，后续需要在wsl中通过mnt来进行传输

如何传输？

su hadoop

mkdir software
mkdir module

JDK8
Hadoop3.4.2

软件版本

需要注意的是，软件是会随着时间迭代的，因此版本号和文件名显然也会
跟着改变，所以下面的一切与这两个文件有关的命令都需要注意修改对应
的版本号进行操作

JDK的安装

Hadoop的安装

https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html
https://hadoop.apache.org/releases.html

假设您的文件在 Windows 路径为 D:\Users\YourName\Documents\my_file.txt ，并且
您想把它转移到 WSL 中当前用户的家目录 (~) 下

示例路径：

windows：D:\Users\YourName\Documents\my_file.txt

wsl：/mnt/d/Users/YourName/Documents/my_file.txt

然后就是mv命令，前面是原位置，后面是移动后希望文件所处的位置

将那两个安装包从windows下移动到 ~/software 下(注意文件名需要根据你下载
到的实际文件修改，路径也需要根据实际所处的位置修改)

以 hadoop-3.4.2.tar.gz 为例

使用ls命令会得到如下结果

窍门

只需要在前面加上/mnt，在哪个盘就在后面跟上盘符，例如D盘就加
上/d，后面只需要改变反斜杠即可

mv /mnt/d/Users/YourName/Documents/my_file.txt ~/target_directory/

mv /mnt/d/Users/lenovo/Desktop/hadoop-3.4.2.tar.gz ~/software/

hadoop@Eurekaimer:~/software$ ls
hadoop-3.4.2.tar.gz jdk-8u451-linux-x64.tar.gz

然后将这两个压缩包解压到 module 文件夹下

以 jdk-8u451-linux-x64.tar.gz 为例

关于上面命令的 -xvzf 中的四个选项的含义可以直接搜索，在此不赘述

3.配置环境变量

加入以下内容(推荐加入位置在末尾，内容需要根据实际文件名修改)

注：可以在 module 目录下使用ls得到

添加内容：

tar -xvzf jdk-8u451-linux-x64.tar.gz -C ~/module

先配置JDK的环境变量，首先回到最初的目录，然后使用vim打开配置文件

cd
vim ~/.bashrc

hadoop@Eurekaimer:~/module$ ls
hadoop-3.4.2 jdk1.8.0_451

export JAVA_HOME=/home/hadoop/module/jdk1.8.0_451
export PATH=$PATH:$JAVA_HOME/bin
// 加入后保存退出
:wq

类似的

加入以下内容(推荐加入位置在末尾，内容需要根据实际文件名修改)

注：可以在 module 目录下使用ls得到

添加内容：

// 运行source使得配置生效
source ~/.bashrc
// 测试安装是否成功
java -version

配置Hadoop环境变量

cd
vim ~/.bashrc

hadoop@Eurekaimer:~/module$ ls
hadoop-3.4.2 jdk1.8.0_451

export HADOOP_HOME=/home/hadoop/module/hadoop-3.4.2
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
// 加入后保存退出
:wq

// 运行source使得配置生效
source ~/.bashrc
// 测试安装是否成功
hadoop version

4.设置ssh免密登录

需要先安装openssh

可以先创建一个文件夹 ~/.ssh

验证是否能够免密登录

这个步骤不应输入密码，结束后退出

5.修改配置文件

sudo apt-get install openssh-server pdsh

cd ~
mkdir .ssh
cd ~/.ssh
ssh-keygen -t rsa
cd
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

ssh localhost

exit

关于免密登录的目的

为什么要免密登录？ 想要体会这一点应当在设置免密登录之前直接进行一
次 ssh localhost 操作，我们会发现登录需要输入密码，而输入密码对于多节
点的操作而言是非常麻烦的，因此我们需要设置免密登录

主要是三个文件

<configuration> 和 </configuration> 之间加入

注意缩进(类似html标签)

仍然是 <configuration> 和 </configuration> 之间加入

core-site.xml

vim core-site.xml

<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9820</value>

</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/module/hadoop-3.3.6/tmp</value>

</property>

hdfs-site.xml

vim hdfs-site.xml

<property>
<name>dfs.replication</name>
<value>1</value>

</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>localhost:9868</value>

加入以下

6.格式化HDFS文件系统

7.启动集群

查看服务，打开浏览器输入 http://localhost:9870

8.运行例子

</property>
<property>
<name>dfs.namenode.http-address</name>
<value>localhost:9870</value>

</property>

hadoop-env.sh

vim hadoop-env.sh

export JAVA_HOME=/home/hadoop/module/jdk1.8.0_451
export HDFS_NAMENODE_USER=hadoop
export HDFS_DATANODE_USER=hadoop
export HDFS_SECONDARYNAME_USER=hadoop

hdfs namenode -format

start-dfs.sh
jps

使用vim生成测试文件 test1.txt 和 test2.txt ，每个文件输入若干单词

将目录上传到hdfs文件系统

查看输出目录

查看最终结果

cd
mkdir input
cd input

hdfs dfs -put ~/input /input
cd $HADOOP_HOME/share/hadoop/mapreduce
hadoop jar hadoop-mapreduce-examples-3.4.2.jar wordcount /input /output

hdfs dfs -ls /output

hdfs dfs -cat /output/part-r-00000

彩蛋

如果统计结果正确，那么说明你的 Hadoop 伪分布式集群就搭建成功并验
证完成了！
我写的是microsoft love linux!

Lab 3

第四次上机实验的内容为YARN的配置，具体内容如下：

1. YARN环境配置（承接HDFS配置）

主要是修改三个文件

Remark :下面的软件版本都是我的版本，相应的使用需修改

配置第一个

在两个< configuratkion >插入< property > 最后如下：

配置并启动YARN
Yarn中添加队列small,并将任务提交至small队列运行

修改capacity-scheduler.xml文件（最好提前备份该文件cp capacity-
scheduler.xml capacity-scheduler.xml.bak).修改内容包括增加所有
和small队列相关的属性，并且分配default队列和small队列之间的资
源占有比例。
向指定队列提交任务
$hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-
mapreduce-example-3.4.2.jar pi -
Dmapreduce.job.queuename=small 10 10
在yarn的web服务页面查看提交的任务情况和队列情况

mapred-site.xml
yarn-site.xml
hadoop-env.sh

cd $HADOOP_HOME/etc/hadoop
备份可以不备
cp mapred-site.xml.template mapred-site.xml
vim mapred-site.xml

配置第二个

<configuration>
 <property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>
 <property>
 <name>yarn.app.mapreduce.am.env</name>
 <value>HADOOP_MAPRED_HOME=/home/hadoop/module/hadoop-3.4.2</value>
 </property>
 <property>
 <name>mapreduce.map.env</name>
 <value>HADOOP_MAPRED_HOME=/home/hadoop/module/hadoop-3.4.2</value>
 </property>
 <property>
 <name>mapreduce.reduce.env</name>
 <value>HADOOP_MAPRED_HOME=/home/hadoop/module/hadoop-3.4.2</value>
 </property>
 # 后面两条可以不插入
 # 关于端口的部分都可以不插入，因为有默认值
 <property>
 <name>mapreduce.jobhistory.address</name>
 <value>localhost:10020</value>
 </property>
 <property>
 <name>mapreduce.jobhistory.webapp.address</name>
 <value>localhost:19888</value>
 </property>
</configuration>

vim yarn-site.xml

<configuration>
 <property>
 <name>yarn.resourcemanager.hostname</name>
 <value>Eurekaime</value> # 这里是你的hostname主机名(主机名是@后面的)
 </property>

第一个property主机名(hostname)

配置第三个

末尾添加：

2. 启动Yarn服务

 <property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
 </property>
 # 同理端口可以不接入
 <property>
 <name>yarn.resourcemanager.webapp.address</name>
 <value>Eurekaimer:8088</value># 这里仍然是主机名
 </property>
</configuration>

vim hadoop-env.sh

export YARN_RESOURCEMANAGER_USER=hadoop
export YARN_NODEMANAGER_USER=hadoop

如果之前启动过的关闭
$HADOOP_HOME/sbin/stop-all.sh
启动HDFS和YARN
$HADOOP_HOME/sbin/start-dfs.sh
$HADOOP_HOME/sbin/start-yarn.sh
$HADOOP_HOME/sbin/mr-jobhistory-daemon.sh start historyserver

第三条命令报错是因为给出的这个命令是Hadoop2.x版本的，但是它会自动转
换为3.x

如果在 $HADOOP_HOME 目录下：

检查：

896 DataNode
1793 JobHistoryServer
1137 SecondaryNameNode
769 NameNode
1570 NodeManager
2439 ResourceManager
2735 Jps

应该能看到至少以下进程： NameNode ， DataNode ， ResourceManager ，
NodeManager ， JobHistoryServer

3. 配置并启动 small 队列

stop-all.sh
HDFS
start-dfs.sh
Yarn
start-yarn.sh
历史服务器
mr-jobhistory-daemon.sh start historyserver

jps

修改 capacity-scheduler.xml 文件

这个是比较麻烦的，你需要在文件的 <configuration> 和 </configuration> 标签之
间，加入以下内容。这些配置定义了 root 队列下的子队列 default 和 small ，
并分配了资源比例（70% 给 default ，30% 给 small ）(比例可以调，只需要加
和100%即可)

cd $HADOOP_HOME/etc/hadoop
备份仍然可以不用打
cp capacity-scheduler.xml capacity-scheduler.xml.bak
vim capacity-scheduler.xml

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>default,small</value># 这行加入small队列
</property>

default
<property>
 <name>yarn.scheduler.capacity.root.default.capacity</name>
 <value>70</value># 调整比例
</property>
<property>
 <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
 <value>100</value>
</property>

small
<property>
 <name>yarn.scheduler.capacity.root.small.capacity</name>
 <value>30</value>
</property>
<property>
 <name>yarn.scheduler.capacity.root.small.maximum-capacity</name>
 <value>30</value>
</property>

保险起见应该给每个property标签都类似定义相关的small队列的版本，例如上
面的部分就是两个default和两个small，但是使用时其他属性都存在默认值，所
以不配置small的标签也可以跑通

4. 提交任务

精度相当差，如果要更高的精度可以调整后面参数(10 10)

如果要使用web端的话，检查一下端口：

打开之后进行配置

确保配置small队列能够使用(刷新)
yarn rmadmin -refreshQueues

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-
3.4.2.jar pi -Dmapreduce.job.queuename=small 10 10

sudo vim /etc/hosts

This file was automatically generated by WSL. To stop automatic generation of this file,
add the following entry to /etc/wsl.conf:
[network]
generateHosts = false
127.0.0.1 localhost
主机名 ip需要统一
127.0.0.1 Eurekaimer. Eurekaimer
用户名
127.0.0.1 hadoop hadoop

重启一下：

然后尝试访问http://localhost:8088

有时候因为防火墙无法访问，所以采取http协议，或者把电脑防火墙关掉

Lab 4

一切文件版本和路径根据自己情况调整

1.安装Spark 3.4.2

使用之前需要Java和Hadoop环境(很好安装，在之前的Lab中已经安装过)

注：下面需要根据自己的Java/Hadoop/Spark版本进行，可以使用下面的命令
查看

stop-yarn.sh
start-yarn.sh
yarn rmadmin -refreshQueues

关于最后一步提交之后但是无法开始任务

也就是一直卡在提交结束，但是任务迟迟没有开始，有可能是因为你的任
务需求内存大于你的节点能够提供的内存，对于这种情况(如果使用虚拟
机)，你需要调整节点最大可用内存，或者降低任务需要内存，也可以虚报
内存(所以说安装虚拟机的时候不要把自己的内存配置写的太小了)

cat ~/.bashrc

这是我的输出
export JAVA_HOME=/home/hadoop/module/jdk1.8.0_451
export PATH=$PATH:$JAVA_HOME/bin

由于老师的安装文档比较老因此使用的是比较古老的Spark版本，只能去
Apache Archive下载(这是本次实验耗时最久的地方)，然后就是正常移动文件
(WSL)，如果是虚拟机或是本地Linux正常移动即可

解压

PPT复制下来-C前面横线格式不对

移动解压文件并改名spark

本地模式

然后开始配置文件 spark-env.sh

export HADOOP_HOME=/home/hadoop/module/hadoop-3.4.2
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

解读：
Java 版本: jdk1.8.0_451
Hadoop 版本:hadoop-3.4.2
Spark 版本（假设下载）: spark-3.4.2-bin-without-hadoop.tgz

mv /mnt/e/spark-3.4.2-bin-without-hadoop.tgz ~/software/

tar -xvzf ~/software/spark-3.4.2-bin-without-hadoop.tgz -C ~/module/

mv ~/module/spark-3.4.2-bin-without-hadoop/ ~/module/spark

仍然备份，但是改动较少不太可能改错
cd ~/module/spark/conf

https://archive.apache.org/dist/spark/spark-3.4.2/

在最后加上(老师的课件需要打开两次，这里方便就把后续的配置文件一起写上)

由此可以使用本地模式，如果要使用HDFS则需要提前打开Hadoop

Standalone模式

仍然是那个 conf 文件夹

启动Standalone模式，没必要运行，不想运行直接跳过

cp spark-env.sh.template spark-env.sh
vim spark-env.sh

这是原本的
export SPARK_DIST_CLASSPATH=$(/home/hadoop/module/hadoop-3.3.6/bin/hadoop
classpath)
这是后面的
export JAVA_HOME=/home/hadoop/module/jdk1.8.0_451
指定 Hadoop 配置文件的目录，用于YARN和HDFS集成
export HADOOP_CONF_DIR=/home/hadoop/module/hadoop-3.4.2/etc/hadoop
Standalone Master 的主机名和端口
SPARK_MASTER_HOST=localhost
SPARK_MASTER_PORT=7077

 cp workers.template workers
 vim workers
 # 里面的改为
 localhost
 # 里面的默认应该就是，这步没必要做

需要在spark目录下
 ./sbin/start-master.sh
 ./sbin/start-workers.sh spark://localhost:7077
 jps
应该能看到 Master 和 Worker 进程

配置环境变量：

2.安装sbt并配置环境

sbt（Simple Build Tool）用于打包 Scala 编写的 Spark 应用程序

安装的话：Github，官网

安装好了仍然解压安装包

 # 不在目录下可以如下操作，但是需要把下面的环境变量$SPARK_HOME先配置好
(或者键入正确的目录)
 # 1. 启动 Master 进程 [cite: 281]
$SPARK_HOME/sbin/start-master.sh
2. 启动 Worker 进程，连接到 Master [cite: 282]
$SPARK_HOME/sbin/start-workers.sh spark://localhost:7077
3. 检查进程
jps
应该能看到 Master 和 Worker 进程

vim ~/.bashrc

加入
export SPARK_HOME=/home/hadoop/module/spark
export PATH=$PATH:$SPARK_HOME/bin

使得新配置生效
source ~/.bashrc

然后应该就可以使用Spark了
spark-shell
应该就可以使用spark了，这个需要确认一下，确认完了ctrl C退出

tar -xvzf ~/software/sbt-1.9.9.tgz -C ~/module/sbt
配置环境
vim ~/.bashrc

https://github.com/sbt/sbt/releases/download/v1.9.9/sbt-1.9.9.tgz
https://www.scala-sbt.org/download/

3.创建任务

创建文件夹

撰写代码

加入下面的代码

末尾加入
export PATH=$PATH:~/module/sbt/bin
使配置生效
source ~/.bashrc

mkdir ~/sparkapp
mkdir –p ~/sparkapp/src/main/scala

vim ~/sparkapp/src/main/scala/SimpleApp.scala

import SparkContext
import SparkContext._
import SparkConf

object SimpleApp {
 def main(args: Array[String]) {
 val logFile = "file:///home/hadoop/module/spark/README.md" // 用于统计的文本文件
[cite: 789]
 val conf = new SparkConf().setAppName("Simple Application")
 val sc = new SparkContext(conf)
 val logData = sc.textFile(logFile, 2).cache()
 val numAs = logData.filter(line => line.contains("a")).count()
 val numBs = logData.filter(line => line.contains("b")).count()
 println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
 sc.stop() // 补充 sc.stop() 确保程序正常退出，老师课件没写
 }
}

org.apache.spark.
org.apache.spark.
org.apache.spark.

声明该应用程序的信息以及与Spark的依赖关系

打包

应该会生成一个jar包

4.提交任务

你应该会在日志中找到这样一个句子

vim ~/sparkapp/simple.sbt

加入
name := "Simple Project"
version := "1.0"
scalaVersion := "2.12.18" // 与 Spark 3.4.2 兼容的 Scala 版本
libraryDependencies += "org.apache.spark" %% "spark-core" % "3.4.2" % "provided" //
Spark 依赖版本

cd ~/sparkapp
2. 编译并打包应用程序 (sbt package)
sbt package
第一次运行时 sbt 会下载依赖包，耗时较久
成功后，生成的 JAR 包应当位于 ~/sparkapp/target/scala-2.12/simple-project_2.12-
1.0.jar

#建议使用下面的命令 注意$前面还有$ 并非笔误，那个老师的提交命令又有毛病，
class和master前面的横线都少了一个
$SPARK_HOME/bin/spark-submit \
--class "SimpleApp" \
--master spark://localhost:7077 \
~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar

这说明成功了

5.快速签字检查

一键打开所有

到这里所有的需要上机签字的部分就结束了(算平时分的部分)，但是对于想要学
好分布式的同学来说，熟悉Scala语法和代码实现也是不得不品的一环，但是由
于本人比较懒就跳过后续的两次Scala语言的上机作业了，因为在LLM的时代
下，你写不出正确的代码说明这门科目不是很适合你了！！！

2025-11-11 09:25:08,414 INFO scheduler.DAGScheduler: Job 1 finished: count at
SimpleApp.scala:12, took 0.157960 s
Lines with a: 72, Lines with b: 39

start-all.sh

cd ~/module/spark
./sbin/start-master.sh
./sbin/start-workers.sh spark://localhost:7077
jps

~/module/spark/bin/spark-submit \
 --class "SimpleApp" \
 --master spark://localhost:7077 \
 ~/sparkapp/target/scala-2.12/simple-project_2.12-1.0.jar

