多元函数的极限与连续_NKU(答案)¶
约 1162 个字 预计阅读时间 4 分钟
练习10.1¶
10.1 1
在\(\mathbb{R}^{n}\)中举出以下例子
(1) 无穷个开集之交不为开集.
(2) 无穷个闭集之并不为闭集.
Sol.
(1)考虑构造一个收敛的点列,\(X_{k}=\left\{ \left( x_{1},x_{2},\dots,x_{n}\right)|\lvert x_{i} \rvert< \frac{1}{k} \right\}\)
那么可以得到\(\bigcap\limits_{k=1}^{\infty}X_{k}=\left\{ 0 \right\}\),单点集不为开集
(2)考虑构造收敛于区间端点的点列,\(X_{k}=\left\{ (x_{1},x_{2},\dots,x_{n})|d=\sqrt{ \sum\limits_{i=1}^{n}x_{i}^{2} }\leqslant 1- \frac{1}{k}\right\}\)
那么可以得到\(\bigcup\limits_{k=1}^{\infty}X_{k}=\left\{ (x_{1},x_{2},\dots,x_{n})|d<1 \right\}\),是一个开球(开集)
10.1 2
设\(A\)是\(\mathbb{R}^n\)的子集,\(X_0\)是\(A\)的聚点,求证:存在点列\(\{X_m\}\subseteq A\), 使得\(X_m\neq X_0\),且
Proof.
根据聚点的定义知道\(\forall\delta>0,\exists x'\in V(X_{0},\delta)\bigcap A\),那么构造如下点列:
固定\(r_{1}=1,\exists X_{1}\in V(X_{0},r_{1}=1)\bigcap A,X_{1}\neq X_{0}\),再固定\(r_{2}=\min\left\{ \frac{1}{2},\lvert X_{1}-X_{0} \rvert \right\},\exists X_{2}\in V(X_{0},r_{2})\bigcap A,X_{2}\neq X_{0}\)
以此类推,\(r_{n}=\min\left\{ \frac{1}{n},\lvert X_{n-1}-X_{0} \rvert \right\},\exists X_{n}\in V(X_{0},r_{n})\bigcap A,X_{n}\neq X_{0}\)
这样就得到了\(\left\{ X_{m} \right\},\lim\limits_{ m \to \infty }\lvert X_{m}-X_{0} \rvert =0,X_{m}\neq X_{0},\lim\limits_{ m \to \infty }X_{m}=X_{0}\)
10.1 3
设\(A\)是\(\mathbb{R}^n\)的子集,求证:\(\overline A=A\cup A^\prime.\)
Proof.
根据定义,若有\(x\in \overline{A}\),讨论\(x\in A ,x\not\in A\),如果\(x\in A \implies x\in A\bigcup A'\);\(x\not\in A,x\in A'\implies x\in A\bigcup A'\),那么有\(\overline{A}\subset A\bigcup A'\)
反方向\(x\in A\)显然有\(x\in \overline{A}\),若是\(x\in A'\)同样根据定义可得\(A'\subset \overline{A}\),综上可知\(A\bigcup A' \subset \overline{A}\)
由相互包含可知\(\overline{A}=A\bigcup A'\)
10.1 4
求证下列命题:
(1) \(A\subseteq B\Rightarrow A^{\circ }\subseteq B^{\circ }\), \(\overline {A}\subseteq \overline {B};\)
(2) \(\overline {A\cup B}= \overline {A}\cup \overline {B}\), \(\overline {A\cap B}\subseteq \overline {A}\cap \overline {B};\)
(3) \(( A\cap B) ^{\circ }= A^{\circ }\cap B^{\circ }\), \(( A\cup B) ^{\circ }\supseteq A^{\circ }\cup B^{\circ }.\)
Proof.
(1)
若是\(A\subseteq B\implies \forall x\in A^{\circ},\exists V(x,\varepsilon)\subset A\subset B \implies x\in B^{\circ}\implies A^{\circ}\subseteq B^{\circ}\)
同样的\(\forall x\in \overline{A}\),分类讨论\(x\in A\)显然\(x\in B\implies x\in \overline{B}\),若\(x\not\in A,x\in A'\),根据定义有\(V(x,\varepsilon)\setminus \left\{ x \right\}\bigcap A\neq \emptyset\implies V(x,\varepsilon)\setminus \left\{ x \right\}\bigcap B\neq \emptyset \implies x\in \overline{B}\)
所以可得\(\overline{A}\subseteq \overline{B}\)
(2)
\(\forall x\in \overline{A\bigcup B},\forall V(x,\varepsilon)\bigcap\left( A\bigcup B \right)\setminus \left\{ x \right\}\neq \emptyset\)
由此可得\(\left( V(x,\varepsilon)\bigcap A\setminus \left\{ x \right\}\neq \emptyset \right) \bigcup \left( V(x,\varepsilon)\bigcap B\setminus \left\{ x \right\}\neq \emptyset \right)\),也就是属于A或者B的闭包(\(\overline{A}\bigcup \overline{B}\)),\(\overline{A\bigcup B}\subset \overline{A}\bigcup \overline{B}\)
\(V(x,\varepsilon)\bigcap A(B)\setminus \left\{ x \right\}\neq \emptyset\implies V(x,\varepsilon)\bigcap \left( A\bigcup B \right)\setminus \left\{ x \right\}\neq \emptyset\),也就是属于\(A\bigcup B\)的闭包
综上可知:\(\overline{A\bigcup B}=\overline{A}\bigcup \overline{B}\)
同理\(\forall x\in \overline{A\bigcap B},\forall V(x,\varepsilon)\bigcap\left( A\bigcap B \right)\setminus \left\{ x \right\}\neq \emptyset\)
也就是说\(\left( V(x,\varepsilon)\bigcap A\setminus \left\{ x \right\}\neq \emptyset \right) \bigcap \left( V(x,\varepsilon)\bigcap B\setminus \left\{ x \right\}\neq \emptyset \right)\)
故\(\overline{A\bigcap B} \subseteq \overline{A} \bigcap \overline{B}\)
(3)
\(\forall x \in \left( A\bigcap B \right)^{\circ},\exists V(x,\varepsilon)\subset \left( A\bigcap B \right)\implies V(x,\varepsilon)\subset A(B)\implies x\in A^{\circ}\bigcap B^{\circ}\),可知有\(A^{\circ}\bigcap B^{\circ}\supset \left( A\bigcap B \right)^{\circ}\)
若是\(x\in A^{\circ}\bigcap B^{\circ}\),\(\exists V(x,\varepsilon_{1})\subset A,V(x,\varepsilon_{2})\subset B\),取\(\varepsilon=\min\left\{ \varepsilon_{1},\varepsilon_{2} \right\},V(x,\varepsilon)\subset A\bigcap B\),可知有\(A^{\circ}\bigcap B^{\circ}\subset \left( A\bigcap B \right)^{\circ}\)
综上可知,\(A^{\circ}\bigcap B^{\circ}=\left( A\bigcap B \right)^{\circ}\)$
\(\forall x\in A^{\circ}\bigcup B^{\circ},\exists V(x,\varepsilon)\subset A(B),V(x,\varepsilon)\subset \left( A\bigcup B \right)\implies x\in \left( A\bigcup B \right)^{\circ}\)
即证\(A^{\circ}\bigcup B^{\circ}\subset \left( A\bigcup B \right)^{\circ}\)
10.1 5
设\(A\)是\(\mathbb{R}^n\)的子集,求证:
(1) \(A^{\circ }\)是开集; (2) \(\partial A\)是闭集; (3) \(\overline{A}\)是闭集; (4) \(A^{\prime }\)是闭集.
Proof.
(1)
根据定义证明\((A^{\circ})^{\circ}=A^{\circ}\),利用距离函数可知集合内部是其上每一点的邻域:\(\forall x\in A^{\circ},V(x,\varepsilon)\)上任取一点\(x_{0}\),再选择一个邻域\(V(x_{0},\varepsilon-d(x,x_{0}))\)上的点记为\(y\),那么有三角不等式\(d(x,y)\leqslant d(x,x_{0})+d(x_{0},y)<\varepsilon\),证毕。
那么对于A内部上的任意点,选择比原本含于A的开邻域更小的邻域即可含于A的内部,也就是内部的内部仍然为内部,等价为\(A^{\circ}\)是开集
(2)
反证法,假设存在\(x\not\in \partial A,\forall V(x,\varepsilon),V(x,\varepsilon)\bigcap \partial A \neq \emptyset\),目标是导出\(x\in \partial A\)
分类讨论,\(x\in A\)时,\(\forall\varepsilon,V(x,\varepsilon)\bigcap A\neq \emptyset\),再根据假设条件\(V\left( x,\frac{\varepsilon}{2} \right)\bigcap \partial A\neq \emptyset,\exists x_{1}\in V\left( x, \frac{\varepsilon}{2} \right)\)且\(x_{1}\in \partial A\),那么根据定义有\(V\left( x_{1}, \frac{\varepsilon}{2} \right)\bigcap A^{c}\neq \emptyset,\exists x_{2}\in V\left( x_{1}, \frac{\varepsilon}{2} \right)\bigcap A^{c},d(x,x_{2})\leqslant d(x,x_{1})+d(x_{1},x_{2})<\varepsilon\),也就是\(x_{2}\in V(x,\varepsilon),V(x,\varepsilon)\bigcap A^{c}\neq \emptyset\),再根据\(\varepsilon\)的任意性得到\(x\in \partial A\)
同理可得\(x\in A^{c}\)时也有\(x\in \partial A\),综上所述矛盾,\(\partial A=\overline{\partial A}\),\(\partial A\)是闭集
(3)
考虑证明\(\overline{A}^{c}\)是开的,\(\forall x\in \overline{A}^{c},x\not\in A,\exists V(x,\varepsilon)\bigcap A\neq \emptyset\),还需证明\(V(x,\varepsilon)\bigcap \overline{A}=\emptyset\),若是不然,与A的闭包有交,记交点为\(x_{1}\),闭包与A交非空,
那么取\(d=\varepsilon-d(x,x_{1}),V(x_{1},d)\bigcap A\neq \emptyset\),记交点为\(x_{2}\in A\),\(d(x,x_{2})<\varepsilon,x\in A'\subset \overline{A}\),矛盾,所以\(\overline{A}\)是闭集
(4)
同样考虑\(\left( A' \right)^{c},\forall x\in \left( A' \right)^{c}\),\(\exists V(x,\varepsilon)\),\(x\in A\)时\(V(x,\varepsilon)\bigcap A=\left\{ x \right\}\),\(x\not\in A\)时\(V(x,\varepsilon)\bigcap A=\emptyset\),欲证\(\exists V(x,\varepsilon)\bigcap A'=\emptyset\),反证不然,\(\forall \varepsilon,V(x,\varepsilon)\bigcap A'\neq \emptyset\),不妨记为\(x_{1}\),方便起见取\(\varepsilon'= \frac{\varepsilon}{2},x_{1}\in V(x,\varepsilon')\),由于\(x_{1}\in A',V\left( x_{1},\varepsilon'= \frac{\varepsilon}{2} \right)\bigcap A\neq \emptyset\),交点记为\(x_{2}\neq x_{1}\),那么\(x_{2}\in V(x,\varepsilon)\),\(V(x,\varepsilon)\)与A有异于\(x\)的交点,故矛盾,\(\left( A' \right)^{c}\)是开集,取补集知结论成立
10.1 6
设\(\{X_m\}\)为\(\mathbb{R}^n\)中的点列且\(\{X_m\}\)的任何子序列均在\(\mathbb{R}^n\)中不收敛,求证:\(\lim\limits_{m\to\infty}|X_m|=+\infty.\)
Proof.
反证,有界,根据Bolzano-Weierstrass定理(聚点定理)可知有界点列必有聚点即收敛子列,可知与无收敛子列矛盾,所以\(\lim\limits_{ m \to \infty }\lvert X_{m} \rvert= +\infty\)